metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Poly[diaguabis{ μ -5-[4-(1*H*-imidazol-1vlmethyl)phenyl]tetrazolato}copper(II)]

Yuan Li and Ruizhan Chen*

Department of Chemistry, Changchun Normal University, Changchun 130032, People's Republic of China Correspondence e-mail: rzchen2012@163.com

Received 23 March 2012; accepted 6 April 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.031; wR factor = 0.085; data-to-parameter ratio = 12.7.

In the title compound, $[Cu(C_{11}H_9N_6)_2(H_2O)_2]_n$, the Cu^{II} atom lies on an inversion center and is coordinated by four N atoms from four 5-[4-(1H-imidazol-1-ylmethyl)phenyl]tetrazolate ligands and two water molecules in a distorted octahedral geometry. The ligands bridge the Cu^{II} atoms, leading to the formation of a two-dimensional network parallel to (100). The structure is further stabilized by O-H···N hydrogen bonds within the network.

Related literature

For background to metal-organic architectures, see: Song et al. (2012); Wang et al. (2010). For background to metal-azolate frameworks, see: Masciocchi et al. (2005). For a related structure, see: Zhang et al. (2006).

Experimental

Crystal data

 $[Cu(C_{11}H_9N_6)_2(H_2O)_2]$ $M_r = 550.06$ Monoclinic, $P2_1/c$ a = 7.3363 (10) Åb = 6.1934 (9) Å c = 25.219 (4) Å $\beta = 97.708 \ (2)^{\circ}$

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{\min} = 0.751, \ T_{\max} = 0.824$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.031$	H atoms treated by a mixture of
$wR(F^2) = 0.085$	independent and constrained
S = 1.09	refinement
2224 reflections	$\Delta \rho_{\rm max} = 0.35 \ {\rm e} \ {\rm \AA}^{-3}$
175 parameters	$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$
2 restraints	

V = 1135.5 (3) Å³

Mo $K\alpha$ radiation

 $0.25 \times 0.21 \times 0.20 \text{ mm}$

6050 measured reflections

2224 independent reflections

2064 reflections with $I > 2\sigma(I)$

 $\mu = 1.01 \text{ mm}^-$

T = 293 K

 $R_{\rm int} = 0.015$

Z = 2

Table 1

Selected bond	l lengths ((A)	١.
---------------	-------------	-----	----

Cu1-N1	2.0247 (15)	Cu1-O1W	2.610 (2)
Cu1-N6 ¹	1.9909 (16)		
	. 1 . 1		

Symmetry code: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$.

Table 2

Hydrogen-bond geometry (Å, °).

$\overline{D-\mathrm{H}\cdots A}$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1W-H1A\cdots N3^{ii}$	0.90 (2)	2.07 (2)	2.929 (3)	161 (3)
Symmetry code: (ii) -r	$-v \pm 1 - z \pm 1$	1		

Symmetry code: (ii) -x, -y + 1, -z + 1.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL.

We thank Changchun Normal University for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2532).

References

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin,

USA. Masciocchi, N., Galli, S. & Sironi, A. (2005). Comm. Inorg. Chem. 26, 1-37.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Song, X.-Z., Qin, C., Guan, W., Song, S.-Y. & Zhang, H.-J. (2012). New J. Chem 36 877-882

Wang, G.-H., Lei, Y.-Q., Wang, N., He, R.-L., Jia, H.-Q., Hu, N.-H. & Xu, J.-W. (2010). Cryst. Growth Des. 6, 519-523.

Zhang, J.-P., Lin, Y.-Y., Huang, X.-C. & Chen, X.-M. (2006). Cryst. Growth Des. 10, 534-540.

supplementary materials

Acta Cryst. (2012). E68, m622 [doi:10.1107/S1600536812015176]

Poly[diaquabis{u-5-[4-(1H-imidazol-1-ylmethyl)phenyl]tetrazolato}copper(II)]

Yuan Li and Ruizhan Chen

Comment

Metal-organic architectures constructed by flexible, multifunctional ligands often exhibit structural diversity (Song *et al.*, 2012; Wang *et al.*, 2010). Metal-azolate frameworks, being composed of transition metal ions and deprotonated fivemembered heterocycles, are regarded as a great achievement in understanding supramolecular isomerism (Masciocchi *et al.*, 2005). The azolate nitrogen donors can be presicely controlled as coordination and guest binding sites. In addition to the strong coordination ability toward transition metal ions, azolate ligands also combine the negative charge of carboxylates and predictable coordination modes of pyridines. Recently, we obtained the title complex by the reaction of copper chloride with 5-(4-imidazol-1-yl-benzyl)-2*H*-tetrazole using hydrothermal method and its crystal structure is reported here.

In the title compound, the Cu^{II} atom lies on an inversion center and adopts a distorted octahedral coordination geometry, being coordinated by four N atoms from four azolate ligands and two water molecules (Fig. 1, Table 1). The Cu—O and Cu—N bond lengths and the bond angles are in the normal range (Zhang *et al.*, 2006). The bridging azolate ligands allow the formation of a two-dimensional network parallel to (1 0 0) (Fig. 2). The crystal structure is further stabilized by O—H···N hydrogen bonds within the network (Table 2).

Experimental

A mixture of CuCl₂.2H₂O (0.2 mmol, 0.034 g), 5-(4-imidazol-1-yl-benzyl)-2*H*-tetrazole (0.2 mmol, 0.045 g), NaOH (0.2 mmol, 0.008 g) and water (10 ml) was sealed in a 15 ml Teflon-lined reactor, which was heated at 120°C for 72 h and then gradually cooled to room temperature. Blue crystals were obtained.

Refinement

H atoms on C atoms were generated geometrically and refined as riding atoms, with C—H = 0.93 (aromatic) and 0.97 (CH₂) Å and $U_{iso}(H) = 1.2U_{eq}(C)$. Water H atoms were located in a difference Fourier map and refined with $U_{iso}(H) = 1.5U_{eq}(O)$.

Computing details

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT* (Bruker, 2007); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *XP* in *SHELXTL* (Sheldrick, 2008) and *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Figure 1

The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) x, 1/2-y, 1/2+z; (ii) -x, -y, 1-z; (iii) -x, -1/2+y, 1/2-z.]

Figure 2

View of the two-dimensional network.

Poly[diaquabis{µ-5-[4-(1*H*-imidazol-1- ylmethyl)phenyl]tetrazolato}copper(II)]

Crystal data	
$[Cu(C_{11}H_9N_6)_2(H_2O)_2]$	F(000) = 566
$M_r = 550.06$	$D_{\rm x} = 1.609 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 2224 reflections
a = 7.3363 (10) Å	$\theta = 1.0-26.0^{\circ}$
b = 6.1934 (9) Å	$\mu = 1.01 \ { m mm^{-1}}$
c = 25.219 (4) Å	<i>T</i> = 293 K
$\beta = 97.708 \ (2)^{\circ}$	Block, blue
V = 1135.5 (3) Å ³	$0.25 \times 0.21 \times 0.20 \text{ mm}$
Z = 2	

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2001) $T_{\min} = 0.751, T_{\max} = 0.824$	6050 measured reflections 2224 independent reflections 2064 reflections with $I > 2\sigma(I)$ $R_{int} = 0.015$ $\theta_{max} = 26.0^{\circ}, \ \theta_{min} = 1.6^{\circ}$ $h = -6 \rightarrow 9$ $k = -7 \rightarrow 7$ $l = -27 \rightarrow 31$
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full $P(F^2 > 2, (F^2)) = 0.021$	map
$\frac{R[F^2 > 2\sigma(F^2)] = 0.031}{wR(F^2) = 0.085}$	neighbouring sites
S = 1.09	H atoms treated by a mixture of independent
2224 reflections	and constrained refinement
1/5 parameters	$w = 1/[\sigma^2(F_o^2) + (0.044P)^2 + 0.7185P]$
2 restraints	where $P = (F_0^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.35 \ {\rm e} \ {\rm A}^{-3}$
	$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{A}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cu1	0.0000	0.0000	0.5000	0.03061 (14)	
C1	0.1942 (2)	0.1287 (3)	0.35950 (7)	0.0210 (4)	
C2	0.2239 (2)	0.0738 (3)	0.30431 (7)	0.0206 (4)	
C3	0.1855 (3)	-0.1330 (3)	0.28390 (7)	0.0238 (4)	
H3	0.1428	-0.2387	0.3054	0.029*	
C4	0.2110 (3)	-0.1813 (3)	0.23170 (7)	0.0241 (4)	
H4	0.1839	-0.3193	0.2183	0.029*	
C5	0.2764 (2)	-0.0262 (3)	0.19905 (7)	0.0204 (4)	
C6	0.3139 (3)	0.1795 (3)	0.21932 (7)	0.0246 (4)	
H6	0.3571	0.2848	0.1978	0.030*	
C7	0.2875 (3)	0.2295 (3)	0.27156 (7)	0.0235 (4)	
H7	0.3126	0.3682	0.2847	0.028*	
C8	0.3083 (3)	-0.0898 (3)	0.14277 (7)	0.0252 (4)	
H8A	0.4269	-0.1604	0.1444	0.030*	
H8B	0.2147	-0.1928	0.1285	0.030*	
С9	0.1502 (3)	0.1771 (3)	0.07892 (7)	0.0252 (4)	

Н9	0.0324	0.1233	0.0800	0.030*	
C10	0.3754 (3)	0.3717 (4)	0.06022 (8)	0.0337 (5)	
H10	0.4416	0.4790	0.0454	0.040*	
C11	0.4493 (3)	0.2182 (4)	0.09521 (8)	0.0315 (5)	
H11	0.5727	0.2005	0.1087	0.038*	
N1	0.1185 (2)	0.1067 (3)	0.43685 (6)	0.0249 (3)	
N2	0.1231 (3)	-0.0072 (2)	0.39174 (7)	0.0287 (4)	
N3	0.1844 (2)	0.3016 (3)	0.43178 (6)	0.0293 (4)	
N4	0.2332 (3)	0.3209 (3)	0.38258 (7)	0.0316 (4)	
N5	0.3034 (2)	0.0945 (3)	0.10656 (6)	0.0230 (3)	
N6	0.1884 (2)	0.3443 (3)	0.05002 (6)	0.0273 (4)	
O1W	-0.2368 (3)	0.3145 (3)	0.50004 (7)	0.0427 (4)	
H1A	-0.214 (4)	0.447 (3)	0.5139 (12)	0.064*	
H1B	-0.336 (3)	0.265 (5)	0.5113 (12)	0.064*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	<i>U</i> ²³
Cul	0.0456 (2)	0.0346 (2)	0.01278 (19)	-0.02094 (15)	0.00818 (14)	-0.00562 (13)
C1	0.0209 (9)	0.0248 (9)	0.0174 (9)	-0.0010 (7)	0.0029 (7)	-0.0002 (7)
C2	0.0200 (8)	0.0262 (9)	0.0160 (9)	0.0007 (7)	0.0041 (6)	0.0006 (7)
C3	0.0276 (9)	0.0250 (10)	0.0195 (9)	-0.0025 (8)	0.0062 (7)	0.0033 (7)
C4	0.0296 (10)	0.0230 (9)	0.0198 (9)	-0.0006 (8)	0.0036 (7)	-0.0006 (7)
C5	0.0206 (9)	0.0264 (9)	0.0139 (9)	0.0048 (7)	0.0012 (7)	0.0025 (7)
C6	0.0308 (10)	0.0270 (10)	0.0170 (9)	-0.0009 (8)	0.0067 (7)	0.0058 (7)
C7	0.0289 (10)	0.0227 (9)	0.0188 (9)	-0.0029 (8)	0.0034 (7)	-0.0007 (7)
C8	0.0345 (10)	0.0261 (10)	0.0153 (9)	0.0079 (8)	0.0043 (7)	0.0033 (7)
C9	0.0283 (10)	0.0286 (10)	0.0185 (9)	0.0068 (8)	0.0030 (7)	0.0025 (7)
C10	0.0367 (11)	0.0403 (12)	0.0265 (11)	0.0037 (9)	0.0136 (9)	0.0104 (9)
C11	0.0276 (10)	0.0408 (12)	0.0271 (10)	0.0025 (9)	0.0070 (8)	0.0062 (9)
N1	0.0346 (9)	0.0250 (8)	0.0160 (7)	-0.0079 (7)	0.0064 (6)	-0.0040 (6)
N2	0.0454 (11)	0.0258 (9)	0.0167 (8)	-0.0091 (7)	0.0110 (7)	-0.0039 (6)
N3	0.0429 (10)	0.0269 (9)	0.0200 (8)	-0.0103 (7)	0.0116 (7)	-0.0042 (6)
N4	0.0479 (11)	0.0281 (9)	0.0217 (8)	-0.0110 (8)	0.0149 (7)	-0.0035 (7)
N5	0.0276 (8)	0.0282 (8)	0.0134 (7)	0.0056 (7)	0.0039 (6)	0.0024 (6)
N6	0.0362 (9)	0.0324 (9)	0.0142 (7)	0.0107 (7)	0.0067 (6)	0.0041 (6)
O1W	0.0577 (11)	0.0355 (9)	0.0361 (9)	-0.0071 (8)	0.0100 (8)	-0.0050 (7)

Geometric parameters (Å, °)

Cu1—N1	2.0247 (15)	C8—N5	1.459 (2)	
Cu1—N6 ⁱ	1.9909 (16)	C8—H8A	0.9700	
Cu1—O1W	2.610 (2)	C8—H8B	0.9700	
C1—N2	1.325 (2)	C9—N6	1.318 (3)	
C1—N4	1.339 (2)	C9—N5	1.341 (2)	
C1—C2	1.477 (2)	С9—Н9	0.9300	
C2—C7	1.391 (3)	C10—C11	1.359 (3)	
С2—С3	1.395 (3)	C10—N6	1.372 (3)	
C3—C4	1.387 (3)	C10—H10	0.9300	
С3—Н3	0.9300	C11—N5	1.378 (3)	

C4—C5	1 392 (3)	C11—H11	0.9300
C4—H4	0.9300	N1—N3	1 313 (2)
C5—C6	1 386 (3)	N1—N2	1.343(2)
C5—C8	1.521 (2)	N3—N4	1.342 (2)
C6—C7	1 392 (3)	O1W—H1A	0.900(18)
C6—H6	0.9300	OIW—HIB	0.874(18)
C7—H7	0.9300		0.071(10)
C, II,	0.7200		
$N6^{ii}$ —Cu1—N6 ⁱ	180.00	С2—С7—Н7	119.7
N6 ⁱⁱ —Cu1—N1	89.67 (6)	C6—C7—H7	119.7
N6 ⁱ —Cu1—N1	90.33 (6)	N5-C8-C5	112.80 (15)
$N6^{ii}$ —Cu1—N1 ⁱⁱⁱ	90.33 (6)	N5—C8—H8A	109.0
$N6^{i}$ —Cu1—N1 ⁱⁱⁱ	89.67 (6)	C5—C8—H8A	109.0
N1—Cu1—N1 ⁱⁱⁱ	180.0	N5—C8—H8B	109.0
O1W— $Cu1$ — $N1$	96.47 (6)	C5-C8-H8B	109.0
$O1W$ — $Cu1$ — $N6^{ii}$	87 49 (7)	H8A—C8—H8B	107.8
$O1W - Cu1 - O1W^{iii}$	180.00	N6—C9—N5	111 21 (18)
$O1W - Cu1 - N1^{iii}$	83 53 (6)	N6-C9-H9	174.4
$01W$ — $Cu1$ — $N6^{i}$	92 51 (7)	N5-C9-H9	124.4
N2-C1-N4	112 13 (16)	C_{11} C_{10} N_6	109 69 (18)
$N_2 - C_1 - C_2$	123 50 (16)	$C_{11} - C_{10} - H_{10}$	105.05 (10)
N4 - C1 - C2	124 37 (16)	N6-C10-H10	125.2
C7-C2-C3	119 01 (16)	C10-C11-N5	105 68 (18)
C7 - C2 - C1	120.23(17)	C10-C11-H11	105.00 (10)
$C_{1}^{2} - C_{2}^{2} - C_{1}^{2}$	120.25(17) 120.75(16)	N5-C11-H11	127.2
C_{4} C_{3} C_{2} C_{1}	120.75 (10)	N3N1N2	127.2 110.41 (15)
C4-C3-H3	110.0	$N_3 N_1 N_2$	110.41(13) 125.39(12)
$C_2 = C_3 = H_3$	110.0	$N_2 = N_1 = Cu_1$	123.39(12) 123.89(12)
$C_2 - C_3 - C_5$	119.9	$N_2 - N_1 - Cu_1$	123.89(12) 104.08(15)
$C_3 = C_4 = C_3$	110.6	N1 N3 N/	104.00(15) 108.63(15)
$C_5 = C_4 = H_4$	119.0	C1 N/ N3	103.05(15) 104.76(15)
C_{5}	119.0	$C_1 = N_1 = N_3$	104.70(15) 107.46(16)
C_{0}	110.91(10) 122.20(16)	C_{9} N5 C_{8}	124 89 (16)
$C_{0} = C_{0} = C_{0}$	122.29(10) 118.70(16)	$C_{2} = N_{2} = C_{3}$	127.63(10)
$C_{4} = C_{5} = C_{8}$	118.79(10) 120.50(17)	$C_1 = N_2 = C_3$	127.03(10) 105.04(16)
$C_{5} = C_{6} = C_{7}$	120.30 (17)	$C9 \qquad N6 \qquad C10$	103.94(10) 123.30(14)
C_{2}	119.8	$C_{10} = N_{0} = C_{11}$	123.39(14) 120.58(14)
$C^{2} = C^{2} = C^{2}$	119.8		130.38(14)
02-07-08	120.55 (17)	HIA—OIW—HIB	109 (3)
N2 C1 C2 C7	175 61 (18)	N6 ⁱ Cu1 N1 N2	146 67 (17)
$N_2 = C_1 = C_2 = C_7$	-25(3)	$N_{1} = C_{1} = N_{1} = N_{2}$	-0.1(2)
$N_{2} = C_{1} = C_{2} = C_{1}$	-2, 2, (3)	N4 - C1 - N2 - N1	0.1(2)
$N_2 - C_1 - C_2 - C_3$	3.2(3)	$N_2 = N_1 = N_2 = N_1$	-0.2(2)
$C_{7} = C_{2} = C_{3}$	1/7.71(10)	$N_{1} = N_{1} = N_{2} = C_{1}$	0.2(2)
$C_1 = C_2 = C_3 = C_4$	172.88(17)	$\begin{array}{c} \mathbb{C} \mathbf{u}_{1} \longrightarrow \mathbb{I} \mathbf{v}_{1} \longrightarrow \mathbb{I} \mathbf{v}_{2} \longrightarrow \mathbb{I} \mathbf{v}_{1} \\ \mathbb{N} \mathbf{v}_{2} \longrightarrow \mathbb{I} \mathbf{v}_{1} \longrightarrow \mathbb{I} \mathbf{v}_{2} \longrightarrow \mathbb{I} \mathbf{v}_{4} \end{array}$	1/3.02(13)
$C_1 - C_2 - C_3 - C_4$	1/0.00(1/)	$\frac{1}{1}$	0.4(2)
$C_2 = C_3 = C_4 = C_5$	-0.8(3)	$\begin{array}{c} \text{U}_{1} \\ \text{U}_{2} \\ \text{U}_{2} \\ \text{U}_{3} \\ \text{U}_{4} \\ \text{U}$	-1/3.29(13)
$C_{2} = C_{4} = C_{5} = C_{6}$	-0.8(3)	$\frac{1}{12} - \frac{1}{12} - \frac{1}{14} - \frac{1}{13}$	0.3(2)
$C_{4} = C_{5} = C_{6} = C_{7}$	1/1.00(1/)	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	1/9.31(1/)
し4	0.5 (5)	IN1-IN3-IN4-UI	-0.4 (2)

supplementary materials

C8—C5—C6—C7	-178.27 (17)	N6—C9—N5—C11	0.8 (2)
C3—C2—C7—C6	-0.5 (3)	N6—C9—N5—C8	179.32 (16)
C1—C2—C7—C6	-179.34 (17)	C10-C11-N5-C9	-0.5 (2)
C5—C6—C7—C2	0.3 (3)	C10-C11-N5-C8	-178.94 (17)
C6—C5—C8—N5	-24.7 (3)	C5—C8—N5—C9	-85.6 (2)
C4—C5—C8—N5	156.69 (17)	C5-C8-N5-C11	92.7 (2)
N6-C10-C11-N5	0.0 (2)	N5-C9-N6-C10	-0.8 (2)
N6 ⁱⁱ —Cu1—N1—N3	139.55 (17)	N5—C9—N6—Cu1 ^{iv}	176.09 (12)
N6 ⁱ —Cu1—N1—N3	-40.45 (17)	C11—C10—N6—C9	0.5 (2)
N6 ⁱⁱ —Cu1—N1—N2	-33.33 (17)	C11-C10-N6-Cu1 ^{iv}	-176.08 (14)

Symmetry codes: (i) *x*, -*y*+1/2, *z*+1/2; (ii) -*x*, *y*-1/2, -*z*+1/2; (iii) -*x*, -*y*, -*z*+1; (iv) -*x*, *y*+1/2, -*z*+1/2.

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
O1 <i>W</i> —H1 <i>A</i> ···N3 ^v	0.90 (2)	2.07 (2)	2.929 (3)	161 (3)

Symmetry code: (v) -x, -y+1, -z+1.